The Crystal and Molecular Structure of Di- μ-thio-n-butyl(bis- π-cyclopentadienylmolybdenum)irondichloride, a Model Compound of the Nitrogenase System

By T.S.Cameron and C. K. Prout
Chemical Crystallography Laboratory, South Parks Road, Oxford OXI 3QS, England

(Received 14 April 1971)

Abstract

The crystal and molecular structure of di- μ-thio-n-butyl(bis- π-cyclopentadienylmolybdenum)irondichloride, a model compound of the nitrogenase system (monoclinic, $a=8 \cdot 483, b=19 \cdot 686, c=14.504 \AA$, $\gamma=116.7^{\circ}, P 2_{1} / b, Z=4$) has been determined by three-dimensional X-ray methods from 1835 independent reflexions measured on a linear diffractometer. The structure was refined by full-matrix leastsquares $R=7.0 \%$.) The iron-molybdenum separation in the bent sulphur bridge is $3.660 \AA$ and there is no metal-metal bond. The FeS_{2} and MoS_{2} planes are inclined at 148°, Mo-S(mean) is 2.464 and $\mathrm{Fe}-$ S (mean) is $2.386 \AA$. The π-cyclopentadienyl rings are staggered and are inclined at an angle of 133°. The iron atom is approximately tetrahedral and $\mathrm{Fe}-\mathrm{Cl}($ mean $)$ is $2.238 \AA$.

Introduction

Recent investigations suggest that sulphur-bridged molybdenum-iron systems are a significant feature of nitrogenase enzymes (Spence 1969). The crystal and molecular structure of the model compound di- μ-thio-nbutyl (bis- π-cyclopentadienylmolybdenum)irondichloride(I) has been investigated to determine the nature of the Mo...Fe interaction. A preliminary report of this work has been published (Cameron \& Prout 1971).

Fig. 1. Interatomic distances and interbond angles with standard deviations in parentheses.

Experimental

The crystals were prepared by the method of Dias \& Green (1969).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{FeMoS}_{2}, M=531 \cdot 4$,
monoclinic,
$a=8.483 \pm 0.005 \AA$,
$b=19.686 \pm 0.010 \AA$,
$c=14.504 \pm 0.008 \AA$,
$\gamma=116.7 \pm 0 \cdot 1^{\circ}$,
$U=2159.8 \AA^{3}$,
$D_{m}=1.61, Z=4, D_{c}=1.628 \mathrm{g.cm}{ }^{-3}$,
Space group $P 2_{1} / b\left(C_{2 h}^{5}\right.$, No. 14).
Mo $K \alpha$ radiation, $\mu=10.32 \mathrm{~cm}^{-1}$.
The unit-cell dimensions and 1835 independent reflexions with intensities greater than 3σ were measured with a Hilger and Watts linear diffractometer from a crystal mounted about the c axis ($h k 0-h k 15$). The crystal was sealed in a glass capillary. The data were corrected for Lorentz and polarization effects but not for absorption.

From an unsharpened three-dimensional Patterson synthesis, possible positions were assigned to the iron and molybdenum atoms. A Fourier synthesis with phases based upon the positions of these two atoms clearly showed the cyclopentadienyl groups, and the sulphur and chlorine atoms. A difference Fourier synthesis phased upon the positions of these atoms indicated the locations of the α-carbon atoms of the n-butyl groups, but details of the rest of the fragment were diffuse and uncertain. Chemically reasonable positions that were not inconsistent with the difference synthesis were assigned to the remaining n-butyl carbon atoms and the structure was refined by fullmatrix least-squares with isotropic temperature factors on all atoms. After four cycles the isotropic refine-
ment converged at $R=11.0 \%$, and after a further three cycles with anisotropic temperature factors at $R=$ 7.0%. During the last two cycles the positions of the carbon atoms of the n-butyl groups were constrained to a chemically reasonable configuration by the method of Waser (1963) as implemented in Oxford by Ford and Rollett (Rollett 1970). During the refinement the weighting scheme was

$$
w=\left\{\left[\left(50\left|F_{o}\right|-2400\right) / 2000\right]^{2}\right\}^{-1} .
$$

Table 1 lists the observed structure amplitudes and the structure factors calculated from the atomic parameters in Table 2. The atomic scattering factors were
taken from those listed by Cromer \& Waber (1965) and those for neutral iron and molybdenum were corrected from the real part of the anomalous dispersion effect. Fig. 1 shows the interatomic distances and interbond angles with their standard deviations. Fig. 2 gives the crystal structure projected down a and Fig. 3 gives the projection of the π-cyclopentadienyl ligands onto the MoS_{2} plane.

Discussion

The crystals were found to contain isolated units of di- μ-thio-n-butyl(bis- π-cyclopentadienylmolybdenum) irondichloride(I) (Fig. 2) with some uncertainty in the

Table 1. Observed structure amplitudes and calculated structure factors The format is k

[^0] … $\because: \therefore$, \because,

祘

: 3 \%

Fig. 2. The crystal structure projected down a.

Fig. 3. The π-cyclopentadienyl ligands seen in projection onto the MoS_{2} plane.
positions of the terminal groups of the butyl groups. The iron and molybdenum atoms, $3 \cdot 660 \AA$ apart, are bridged by two $\mathrm{S}(\mathrm{n}$-butyl) groups. The mean length of the molybdenum-sulphur bonds is $2.464 \AA$ and of the iron-sulphur bonds $2.386 \AA$. The angle between the FeS_{2} and MoS_{2} planes is 148°. The n-butyl groups have the cis configuration with respect to the $\mathrm{FeS}_{2} \mathrm{Mo}$ system with both α-carbon atoms on the same side of the MoS_{2} plane as the iron atom. The coordination polyhedron of the molybdenum atom is completed by two π-cyclopentadienyl groups which are in the staggered configuration (Fig. 3) and inclined with respect to one another at an angle of 133°. The environment of the iron atom is approximately tetrahedral with a mean iron-chlorine bond length of $2 \cdot 238 \AA$.

When the compound was first prepared there was considerable speculation about a possible iron molybdenum bond. The $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoS}_{2}$ fragment has a pair of d-electrons which, according to Ballhausen \& Dahl (1961) should occupy an orbital directed between the bridging sulphur atoms towards the iron atom. These electrons could in principle form a donor bond with the iron atom. Alcock (1969), however, places the electron pair in an orbital outside the bridge. On this model metal-metal bonding would not be expected. The molybdenum-iron distance, $3.660 \AA$, is at first sight too long for a metal-metal bond but it is significantly shorter than the Mo-Rh distance, $3.88 \AA$, (Prout \& Rees, 1971) in
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mathrm{SCH}_{3}\right)_{2} \mathrm{Rh}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2}\right]^{+}$, which contains a planar $\mathrm{MoS}_{2} \mathrm{Rh}$ system and significantly shorter than the $\mathrm{W}-\mathrm{Cr}$ distance, $3.93 \AA$, in
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{4}$ (Cameron et al., 1971),

Table 2. Atomic parameters ($\times 10^{4}$) with standard deviations $\left(\times 10^{4}\right)$ in parentheses
The temperature factor T has the form

$T=\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{23} k l b^{*} c^{*}+2 U_{13} h l a^{*} c^{*}+2 U_{12} h k a^{*} b^{*}\right)\right]$.									
	x / a	y / b	z/c	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{13}$	$2 U_{12}$
Mo(1)	307 (2)	2738 (1)	364 (1)	646 (1)	434 (1)	522 (1)	41 (1)	23 (2)	532 (1)
S(1)	-158(5)	1691 (2)	3875 (3)	616 (2)	452 (2)	548 (2)	-54 (4)	- 50 (4)	407 (4)
S(2)	2755 (5)	2936 (2)	4809 (3)	596 (2)	487 (2)	697 (3)	-106 (4)	- 122 (4)	361 (3)
$\mathrm{Fe}(1)$	2839 (3)	1912 (1)	3965 (2)	625 (1)	511 (1)	625 (2)	30 (2)	21 (2)	508 (2)
$\mathrm{Cl}(1)$	3172 (6)	968 (2)	4669 (4)	923 (3)	580 (2)	1040 (4)	308 (5)	82 (6)	792 (5)
$\mathrm{Cl}(2)$	4496 (6)	2391 (3)	2713 (4)	824 (3)	1019 (4)	662 (4)	126 (6)	87 (5)	776 (6)
C(1)	-1430 (23)	3070 (9)	5948 (15)	729 (11)	621 (10)	1097 (16)	49 (20)	111 (22)	983 (19)
C(2)	-50 (25)	3491 (9)	5316 (16)	1080 (14)	632 (10)	1082 (16)	32 (22)	40 (27)	1335 (21)
C(3)	-676 (24)	3102 (9)	4413 (12)	1019 (13)	636 (10)	734 (14)	-158(17)	-323 (20)	1265 (20)
C(4)	-2403 (22)	2484 (10)	4536 (14)	723 (11)	949 (13)	836 (14)	-37 (22)	-80 (22)	1127 (21)
C(5)	-2861 (23)	2463 (11)	5428 (18)	707 (12)	1018 (15)	1319 (20)	-343 (28)	- 134 (27)	1168 (23)
C(11)	461 (27)	2120 (10)	6867 (12)	1207 (16)	811 (12)	558 (12)	403 (20)	264 (23)	1154 (24)
C(12)	1148 (24)	1720 (8)	6306 (12)	1069 (14)	468 (9)	576 (12)	122 (15)	-214 (20)	644 (19)
C(13)	- 366 (24)	1103 (8)	5892 (12)	1036 (13)	518 (9)	527 (11)	260 (19)	-224 (15)	793 (19)
C(14)	- 1925 (24)	1131 (9)	6112 (14)	918 (13)	661 (11)	728 (13)	576 (19)	441 (22)	649 (20)
C(15)	- 1413 (28)	1752 (10)	6794 (14)	1231 (16)	705 (12)	664 (13)	400 (20)	630 (24)	881 (23)
C(21)	4398 (26)	3357 (10)	5682 (15)	1104 (16)	893 (14)	1115 (20)	-507 (25)	-1080 (28)	571 (25)
C(22)	5101 (43)	4219 (11)	5699 (28)	2319 (39)	1660 (30)	2845 (55)	-1615 (63)	-3744 (81)	104 (54)
C(23)	6927 (29)	4561 (13)	6193 (25)	2056 (36)	1562 (29)	2557 (52)	-362 (60)	-1277 (73)	1565 (53)
C(24)	6916 (50)	5070 (26)	6984 (27)	2600 (50)	3331 (60)	3011 (77)	-924 (96)	848 (92)	3673 (77)
C(31)	- 1898 (21)	707 (7)	3738 (11)	1014 (14)	507 (9)	801 (14)	- 334 (18)	- 354 (22)	289 (19)
C(32)	-1486 (25)	447 (8)	2805 (12)	1259 (17)	525 (11)	$942(17)$ $1365(22)$	$-522(20)$ $-335(26)$	$-279(26)$ -353 (38)	$280(22)$ 671 (27)
C(33)	-2816 (28)	$-380(8)$ $-618(12)$	2596 (14) 1637 (17)	$1644(22)$ $2134(33)$	552 (12) 935 (18)	$1365(22)$ $1991(36)$	$-335(26)$ $-1188(41)$	$-353(38)$ $1026(55)$	671 (27) $538(31)$
C(34)	-2472 (41)	-618 (12)	1637 (17)	2134 (33)	935 (18)	1991 (36)	-1188 (41)	1026 (55)	538 (31)

where the angle between the WS_{2} and CrS_{2} planes is 154.5°. The present work is, however, the first report of a sulphur-bridged molybdenum-iron system, so there is no direct comparision for the distance between the molybdenumand iron atoms. Several structures have been reported that contain sulphur bridged iron-iron systems and for those where there is a metal-metal bond the $\mathrm{Fe}-\mathrm{Fe}$ distances found are $2 \cdot 51 \AA\left[\mu, \mu^{\prime}(c i s\right.$-stilbene- α, β-di-thiolato-bis(tricarbonyliron)] (Weber \& Bryan, 1967). $2.54 \AA$ (ethylthio-irontricarbonyl dimer) (Dahl \& Wei, 1963) and di(methylthio-di-ironhexacarbonyl)sulphide (Coleman, Wajcicki, Pollick \& Dahl, 1967) and $2 \cdot 61 \AA$ [bis (μ-ethylmercaptide $-\mu$-ethylthioxanthate)di(iron ethyl thioxanthate) (Coucouvanis, Lippard \& Zubieta, 1969)]. In these compounds the $\mathrm{Fe}-\mathrm{S}$ bond lengths are in the range $2 \cdot 22-2 \cdot 28 \AA$. In the structure of di- μ phenylthiobis(π-cyclopentadienyl carbonyl)iron (Ferguson, Hanaway \& Islam, 1968), which has many similarities with the present structure, the $\mathrm{Fe}-\mathrm{Fe}$ distance is $3.39 \AA$, the Fe-S distance is $2.26 \AA$ (mean) and the two FeS_{2} planes are inclined at an angle of 164°. The magnetic properties of this compound confirm that it does not contain a metal-metal bond. $\operatorname{Bis}(\pi-$ cyclopentadienyl)oxomolybdenumsulphide (Stevenson \& Dahl, 1967) is one of the few sulphur-bridged molytdenum systems of known structure. The Mo-Mo distance is $2.89 \AA$ and the Mo-S is distance $2.32 \AA$. The $\mathrm{MoS}_{2} \mathrm{Mo}$ grouping is planar and the magnetic measurements are best explained by the presence of a metalmetal bond. More generally in bridged systems $\mathrm{Mo}-\mathrm{Mo}$ bonded distances have been reported as short as $2 \cdot 11 \AA$ [molybdenum(II) acetate, Lawton \& Mason (1965)] and as long as $3 \cdot 26 \AA$ [guaiazulene dimolybdenum hexacarbonyl (Churchill \& Bird, 1968) and di- μ-di-methylphosphidobis(tricarbonyltriethylphosphine)molybdenum (Mais, Owston \& Thompson, 1967)] with a wide spread of intermediate values. Dahl, Costello \& King (1968) and Dahl, Gil \& Felthan (1969) point out that metal-metal distances in ligand-bridged complexes are not valid criteria in themselves of metalmetal bonding unless accompanied by deviations in the interbond angles within the bridge system of the complex. The $\mathrm{S}-\mathrm{Mo}-\mathrm{S}\left(72.6^{\circ}\right) \mathrm{S}-\mathrm{Fe}-\mathrm{S}\left(75.4^{\circ}\right)$ angles are both less than 80° and the Fe-S-Mo angle is 97.9° (mean). In non-bridged systems, the $\mathrm{S}-\mathrm{Mo}-\mathrm{S}$ angle is 82.4° in bis- π-cyclopentadienyl(toluene 3-4 dithiolato) molybdenum (Knox \& Prout, 1969a), the S-Mo-N angle is 78.4° in bis- π-cyclopentadienyl(2 -aminoethanethiolato)molybdenum and the $\mathrm{Cl}-\mathrm{Mo}-\mathrm{Cl}$ angle is 81.5° in (bis- π-cyclopentadienyl)molybdenum dichloride (Cameron, Prout \& Rees, 1971). The S-Mo-S angle in the present work is therefore more acute than is expected which suggests a metal-metal repulsion. The angle at the sulphur atom of a thioalkane bridged system where metal-metal bonding is known to occur is 83° in $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Ti}(\mathrm{SMe})_{2} \mathrm{Mo}(\mathrm{CO})_{4}$ (Davies \& Kilbourn, 1971) and in bis(π-cyclopentadienyl)oxomolybdenumsulphide (Stevenson \& Dahl, 1967) the mean angle at the sulphur atom is $77 \cdot 3^{\circ}$. Consequently there appears
to be no evidence of any type to support the suggestion of a metal-metal bond in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}\left[\mathrm{S}\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)\right]_{2}$ FeCl_{2}.

The relatively shorter Mo-Fe distance can be attributed to the deformation of the bridging system and to the short metal-sulphur bonds. In particular the $\mathrm{Fe}-\mathrm{S}(2.384 \AA)$ bond is markedly shorter than $\mathrm{Cr}-\mathrm{S}$ $(2.49 \AA)$ in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{\mu}-\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{4}$ (Cameron et al., 1971). Molybdenum-sulphur bond lengths in the range $2 \cdot 32-2 \cdot 80 \AA$ have been reported, but those to the $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ Mo group lie within a much narrower range, $2.43 \AA$ in bis- π-cyclopentadienylmolybdenum toluenedithiolate (Knox \& Prout, 1969a), $2 \cdot 44 \AA$, in bis- π-cyclopentadienyl-(2-aminoethanethiolato)molybdenum iodide (Knox \& Prout, 1969b) and $2.52 \AA$ in $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}-\mu-(\mathrm{SMe})_{2} \mathrm{Rh}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2}\right]^{+}$(Prout \& Rees, 1971). The deformation of the bridging system is thought to be caused by repulsions between the sulphur lone pair of electrons and the electrons of the $\mathrm{Fe}-\mathrm{Cl}$ and ($\pi-\mathrm{C}_{5} \mathrm{H}_{5}$)-Mo bonds. The tetrahedral environment of the iron atom permits this deformation without serious steric hindrances between the chlorine atoms and the π-cyclopentdienyl group that is on the opposite side of the molecule to the sulphur lone pair electrons.

The $\mathrm{Cl}-\mathrm{Fe}-\mathrm{Cl}$ angle of 115.5° and the $\mathrm{S}-\mathrm{Fe}-\mathrm{S}$ angle of 75.4 are considerably distorted from the tetrahedral angle of 109.5°; deformation of the tetrahedral environment of iron is not uncommon. Edwards, Johnson \& Williams (1967) have shown from Mössbauer effect spectra and magnetic data that in the series of compounds $\mathrm{A}_{2} \mathrm{FeX}_{4}$ where A is a large cation and $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ and NCS, the iron coordination shows large deviations from cubic symmetry.

The $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ Mo group is not significantly different from those reported by Knox \& Prout (1969a, b).

We thank the Science Research Council for a fellowship for T.S.C.

References

Alcock, N. W. (1969). J. Chem. Soc. (A), p. 2001.
Ballhausen, C. J. \& Dahl, J. P. (1961). Acta Chem. Scand. 15, 1333.
Cameron, T. S., Green, M. L. H., Prout, C. K., Rees, G. V., Joshi, K. K., Davies, G. W., Kilbourne, B. T., Braterman, P. S. \& Wilson, V. A. (1971). Chem. Commun. p. 14.
Cameron, T. S. \& Prout, C. K. (1971). Chem. Commun. p. 2620.

Cameron, T. S., Prout, C. K. \& Rees, G. V. (1971). To be published.
Churchill, M. R. \& Bird, P. H. (1968). Inorg. Chem. 7, 1545.

Coleman, J. M., Wajcicki, A., Pollick, P. J. \& Dahl, L. F. (1967). Inorg. Chem. 6, 1236.

Coucouvanis, D., Lippard, S. J. \& Zubieta, J. A. (1969). J. Amer. Chem. Soc. 91, 761.

Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.

Dahl, L. F., Costello, W. R. \& King, R. B. (1968). J. Amer. Chem. Soc. 90, 5422.

Dahl, L. F., Gil, E. R. \& Felthan, R. D. (1969). J. Amer. Chem. Soc. 91, 1653.
Dahl, L. F. \& Wei, C-H. (1963). Inorg. Chem. 2, 328.
Davies, G. R. \& Kilbourn, B. T. (1971). J. Chem. Soc. (A), p. 87.

Dias, A. R. \& Green, M. L. H. (1969). Chem. Commun. p. 962.

Edwards, R. R., Johnson, C. E. \& Williams, R. J. P. (1967). J. Chem. Phys. 47, 2074.

Ferguson, G., Hannaway, C. \& Islam, K. M. S. (1968). Chem. Commun. p. 1165.
Knox, J. R. \& Prout, C. K. (1969a). Acta Cryst. B25, 2013.

Knox, J. R. \& Prout, C. K. (1969b). Acta Cryst. B25, 2482.

Lawton, D. \& Mason, R. (1965). J. Amer. Chem. Soc. 87, 921.
Mais, R. H. B., Owston, P. G. \& Thompson, D. T. (1967). J. Chem. Soc. (A), 1735.

Prout, C. K. \& Rees, G. V. (1971). To be published.
Rollett, J. S. (1970). Crystallographic Computing, p. 167. Copenhagen: Munksgaard.
Spence, J. T. (1969). Co-ord. chem. Rev. 4, 475.
Stevenson, D. L. \& Dahl, L. F. (1967). J. Amer. Chem. Soc. 89, 3721.
Waser, J. (1963). Acta Cryst. 16, 1091.
Weber, H. P. \& Bryan, R. F. (1967). J. Chem. Soc. (A), p. 182 .

Acta Cryst. (1972). B28, 457

The Crystal Structure of (-$)_{589}$ cis- α-Dinitro-($\mathrm{L}-3,8$-dimethyltriethylenetetramine)cobalt(III) Perchlorate, $\boldsymbol{c i s - \alpha - [\mathrm { Co } (\mathrm { NO } _ { 2 }) _ { 2 } (\mathrm { L } - 3 , 8 \text { -dimetrien })] \mathrm { ClO } _ { 4 }}$

By M. Ito, F. Marumo and Y. Saito
The Institute for Solid State Physics, The University of Tokyo, Roppongi-7, Minato-ku, Tokyo 106, Japan

(Received 26 April 1971)

Abstract

The structure of $(-)_{589}-c i s-\alpha-\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}(\mathrm{~L}-3,8\right.$-dimetrien $\left.)\right] \mathrm{ClO}_{4}$ has been determined from the threedimensional X-ray data collected by the diffractometer method. The compound forms orthorhombic crystals with $a=12.395, b=16.829, c=7.864 \AA$ and $Z=4$, in space group $P 2_{1} 2_{1} 2_{1}$. The structure has been refined by least-squares methods with anisotropic temperature factors to an R value of 0.056 for 2268 observed reflexions. The perchlorate anion is disordered over two positions. Six nitrogen atoms of the dimetrien ligand and nitro groups are bonded nearly octahedrally to the central cobalt atom. The complex cation has approximately the symmetry $2\left(C_{2}\right)$. The average Co-N(dimetrien) distance is 1.958 (7) \AA, and the average NCoN angle of terminal chelate rings is $86.1(3)^{\circ}$, whereas that of the central ring is $87.6(3)^{\circ}$. The complex cation has the absolute configuration Λ, and the conformations of the three chelate rings are δ, λ and δ, the two methyl groups being in equatorial positions with respect to the chelate rings. The absolute configurations of the two asymmetric nitrogen atoms are both S.

Introduction

Three possible isomers of disubstituted triethylenetetraminecobalt(III) complexes (cis- α, cis- β and trans) were recently prepared and isolated as perchlorates by using the stereoselective quadridentate ligand, L-3,8dimethyltriethylenetetramine:
$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NHCH}_{\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{NH}_{2} \text {, }}$ 3,8-dimetrien (Yoshikawa, Saburi, Sawai \& Goto, 1969). The structure of the cis- β isomer has already been determined (Ito, Marumo \& Saito, 1970). The authors' interest lay in the comparison of the strain energies of the three isomers. Dwyer \& Maxwell (1970) have determined the structure of racemic cis- α-(amminechlorotriethylenetetramine)cobalt(III) nitrate. From the result large non-bonded interactions between the chelate rings are also expected for $\mathrm{L}-3,8$-dimetrien coordinated in cis- α configuration. The crystal structure of $(-)_{589}-$ cis- $\alpha-\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}(\mathrm{~L}-3,8\right.$-dimetrien $\left.)\right] \mathrm{ClO}_{4}$ has been determined in order to establish the stereochemical con-
figuration of the complex cation. The calculation of the strain energy will be reported in the next paper together with that of the cis $-\beta$ and trans isomers (Ito, Marumo \& Saito, 1972).

Experimental

The specimens were kindly supplied by Professor S. Yoshikawa of this University. They are orange prismatic crystals elongated along the c axis, and belong to the orthorhombic system. The cell dimensions, $a=12 \cdot 395 \pm 0 \cdot 002, b=16 \cdot 829 \pm 0.002$ and $c=7 \cdot 864 \pm$ $0.002 \AA$, were determined by using a single-crystal diffractometer with Mo $K \alpha$ radiation ($\alpha_{1}=0.70926, \alpha_{2}=$ $0.71354 \AA$). The systematic absences indicate that the space group is $P 2_{1} 2_{1} 2_{1}$. There are four formula units of $\mathrm{C}_{8} \mathrm{H}_{22} \mathrm{ClCoN}_{6} \mathrm{O}_{8}$ in the unit cell ($D_{x}=1.72 \mathrm{~g} . \mathrm{cm}^{-3}$, $D_{m}=1.72 \mathrm{g.cm}^{-3}$). The crystals were reformed into a sphere with a diameter of about 0.22 mm . The intensity data were collected on a Rigaku automatic four-

[^0]:

